Heterogeneous Systems
Integration

lvan Garcia-Magarino

Introduction

* |oT often has heterogeneous applications

* EAl (Enterprise Application Integration) facilitates
systems integration

e Service integration practice in different languages

e Standard documents for information exchange (e.g.
XML)

EAl (Enterprise Application
Integration) (1)

e EAl uses intermediate software known as
middleware

* Integration with EAI can reduce time-to-market for
novel products.

e EAl allows you to recover your investment by
reusing different applications.

e EAl allows you to overcome chaotic architectures
by managing their complexity, properly training
your personnel

EAI (2)

* EAl is the creation of enterprise solutions by
combining applications using middleware

 Middleware are the application-independent
services that mediate between applications.

e EAl with middleware allows:

* Package functionality as services for other applications
(e.g. an loT garbage collection application can determine
which is the nearest empty garbage can)

* Applications can share information with other
applications

* Coordinate business processes with different
applications

EAIl facilitates new critical
solutions

* Improve customer relations

* |t allows a more global vision of each customer, and the
customer perceives an integrated service.

* Improved supply chain relationships

e XML (eXtensible Markup Language) facilitates
communication between applications.

e EAl improve internal processes
* Reduces time to market for new applications

The Web at EAI

* The web has been a key factor in the rise of the EAI

* Dot-com refers to companies that do most of their
business on the Internet.

* The web is ubiquitous and enables rapid business
growth

Examples of Middleware

* Message Oriented Middleware (MOM)

* Common Object Request Broker Architecture
(CORBA)

* Microsoft Distributed Component Object Model
(DCOM)

e Enterprise Java Beans (EJB)

Barriers to effective EAI

e Chaotic architectures

* APIs (Application Programming Interface) allow you to
provide other applications with access to your
functionality or data.

e Lack of staff skills

 Middleware skills such as MOM, CORBA, DCOM and EJB
are required.

 Safety Failures

Types of Integration (1)

* Integration can occur at three points:
* Presentation
* Functionality
e Data layer

* One objective of integration is to reduce coupling

* Tightly coupled integration can be a serious
maintenance problem

* Integration into the presentation can be easy but
very limiting

Types of Integration (2)

* Data-level integration provides more
comprehensive solutions than presentation-level
integration, but may require rewriting some of the
software.

* Functional integration is the most important model
but the most complex one

* There are three types of functional integration:
* Consistency of data
* Multi-step processes (multistep)
e Plug-and-play components

Integration Model

* An integration model is an approach and setup for
integrating software

* The most relevant aspects to be taken into account
are:
e Simplicity of integration
e Reusability of integration for different configurations
* Breadth of possible approaches to integration
* Experience required to perform the integration

* An integration model defines how the applications
will be integrated indicating the nature and
mechanisms of integration

Presentation Integration Model

(1)

* The presentation integration model integrates new
software through existing presentations.

* This is usually done to create a new user interface.
* Can be used to integrate various applications

Presentation Integration Model

(2)

 When to use it:
* To provide more usable Uls (user interfaces)

* For the user to perceive as one application the composition
of several applications, simply with a common Ul.

* When the only useful point of integration is through its
presentation.

e Examples of Integration:

* Providing a Windows interface for accessing various
applications

* Providing a unified HTML interface for various applications

* Providing a Java-based interface for access to multiple
applications

Presentation Integration Model(3)

e\Web browser

Presentation ~ eWindows GUI

/

Presentation Presentation

I I

Legacy Packaged
Application Application

Data Integration Model

* The data integration model directly integrates
databases and data structures.

* Sometimes, it is as simple as accessing the
database management system (DBMS) of another
application for the coordination

* A data access middleware facilitates database
access through the use and creation of connectors.

Tools and middleware for data
Integration

e Batch file transfer
 ODBC (Open Database connectivity)
 Middleware for access to distributed databases

e Data transformation: It allows passing data from
one database to another destination for use and
transfer of information.

Integration in the data access layer

Presentation

i

Application
Logic

y

Middleware

7\

Legacy
Application

e \Web browser
¢ Java
e Windows GUI

e Batch file transfer
e Database gateway
e ODBC

e Data warehousing
e OLAP

® Data transformation

Packaged
Application

When to use integration at the
data layer

 To combine information from different sources for
analysis and decision making

* To provide multiple applications with read access to
a common source of information

* To allow information to be extracted from one
source of information, and reformatted and
updated in another source of information.

Functional Integration Model

* Business logic is the implementation of the
business process in a programming language.

* Business logic contains the rules necessary to
properly interpret or construct the data and is not
always available through presentation.

* Functional integration integrates business logic

Distributed processing
middleware

* Distributed processing middleware is software that
facilitates the communication of requests between
different software components through the use of
interfaces or messages.

* Provides the execution environment for handling
requests between software components

Types of distributed processing
middleware

* Message-oriented middleware (MOM): Performs
integration by means of message passing between
applications.

* Distributed object technology: This middleware
allows software components to be used as objects.
A well-known example is CORBA

* Processing transaction monitors: Enables
distributed architectures by performing
transactions with concepts such as "two-phase
commit" of a transaction.

Functional Integration

Presentation

v

Application

Logic

¢

Middleware

e \Web browser
e Java
e \Windows GUI

e MOM
e DOT
e TP monitor

Legacy Packaged
Application Application

Types of functional integration

e Data consistency: The updating of information in
one or more sources is coordinated among the
various integrated applications.

* Multi-step processes: A set of applications are
coordinated to perform coordinated actions
executed in the different integrated applications.

e Plug-and-play components: Creation of reusable
interfaces that simplify the creation of new
applications.

Example of Functional Integration
for data consistency

N
PMI

System

Change address
123 Colshire Dr
Ashburn, VA 22102

S
Mortgage
System

Change address
123 Colshire Dr
Ashburn, VA 22102

Checking

System

Change address
123 Colshire Dr
Ashburn, VA 22102

Web Site

Changes address
Customer

Example o
Integrati

ol

Order
Processing
System

W\Order.

Web Site

1. Order supplies

Customer

Logistics and
Shipping

" multi-step Process

<«—— Product

Billing
System

—Bill

Payment

Connect-and-Ready Component
Integration Example

Checking Savings Mortgage Equities
System System System System

N /

Single View of the Customer
Web Site

T

Customer
Y | checking on account

27

Practical example of connector
vetween Java and Python

* Download JPython jar file (standalone version)

* Creating a Java project with NetBeans or similar

* Include Jpython jar file in Java project

* Creating a class in Java (see following slides)
 Creating a Java program (see the following slides)
 Calling from Java program to Python program

Example of Class that facilitates communication between Java and Py

package examplejavapythonvl;
import org.python.core.PyInstance;
import org.python.util.PythonInterpreter;

public class InterpreterExample
{

PythonInterpreter interpreter = null;

public InterpreterExample ()
{

PythonInterpreter.initialize(System.getProperties(),

System.getProperties(), new String([0]);
this.interpreter = new PyChonlnterpreter():;

void execfile(final String fileName)
{

Cthis.interpreter.execfile(fileName) ;

PyInstance createClass(final String className, final String opts)

{

return (PyInstance) this.interpreter.eval (className + " (" + opts + ")");

29

Jsing the interpreter to call the
Python program from Java

public static vold main(String gargs/[])

{
InterpreterkExample ie = new InterpreterkExample();
ie.execfile("hello.py™);
PyInstance hello = le.createClass("Hello™, "None');
hello.invoke ("run"™)

You need the code of the previous class

Python program called from Java

class Hello:
__gui =

def 1ini (self, gui):

.__gui = gui

def run(self):
print 'Hello world!"’

31

Services | Projects X [Files | — ||} InterpreterExample.java X| I’}

E-& ExamplelavaPythonvi Source | History | B~ 8- QB F B0 [&% @20 0|
=& Source Packages 6 T %7
H /

EEB examplejavapythonvi - — 5 Int terE N
“[& InterpreterExample.java public class Interpreterixamp- e

e Libraries 8 {
9 PythonInterpreter interpreter = null;

10
11 public InterpreterExample ()
12 {

13
14
15
16
17
15
19
20
21
22
23
24
25
26
27
28 public static void main(String gargs[])

29| [{

30 InterpreterExample ie = new InterpreterExample();
31
32 ie.execfile("hello.py");
33
34 PyInstance hello = ie.createClass("Hellc", "None™);
35
36 hello.invoke ("run™) ;
37 - 1

38 }

PythonInterpreter.initialize(System.getProperties(),
System.getProperties(), new String[0]);
this.interpreter = new PythonInterpreter();

vold execfile(final String fileName)

{

this.interpreter.execfile(fileName) ;

PyInstance createClass(final String className, final String opts)

{

return (PyInstance) this.interpreter.eval(className + " (" + opts + ")");

—m —a ——

InterpreterExample - Navigator > | -

& examplejavapythonv1.InterpreterExample >

Members v|| <empty> V@ | =
Qutput - ExamplelavaPythonv1 (run) x|

=+& InterpreterExample

- ¢ InterpreterExample()

=) createClass(String className, Stri W

& execfile(String fileName) %D% Hello world!

¢ main(String[] gargs) BUILD SUCCESSFUL (total time: 2 seconds)
B interpreter : PythonInterpreter

run:

Disadvantages of Jython
connector and alternatives

e Cannot run some libraries
* For example Scikit-learn

 Alternative:
* Expose scikit-learn or other libraries in a HTTP/Json

service
e Use microframeworks such as flask, bottle or cornice

Bottle: Python Web Framework

- Bottle's website: http://bottlepy.org/docs/dev/
- Installation, run from console:

pip install bottle

- Write a python program like the following example
(in the next slide)

34

Python program using Bottle

from bottle import route, run, template

('/hello/<name>")
def GEEDE

return ('Hello {{name}}!", name=name)

(host="localhost', port=8080)

@route indicates the route by ascocicating it with a function

35

Access from HTTP

Web access:

Example browser access

<« G © © @ localhost:8080/hello/world
M MG B ® © B836 BHum Bedty E3Inuem B3 inzr EJbus
Hello world!

36

Python console output when
oottle is run

Bottle v0.12.17 server starting up (using WSGIRefServer())...
Listening on http://localhost:8080/
Hit Ctrl-C to quit.

127.90.0.

1 - - [21/Nov/2019 12:54:11] "GET /hello/world HTTP/1.1" 200 19
127.0.0.1 - - [21/Nov/2019 12:54:11] "GET /favicon.ico HTTP/1.1" 404 742
1

127.0.0.1 - - [21/Nov/2019 12:59:31] "GET /hello/world HTTP/1.1" 200 19

37

Jsing the Bottle framework to
integrate a neural network with
Python

te('/integration')
classify():
ation of the neural network
clf = MLPClassifier(solver = 'lbfgs', alpha = le-5, hidden_layer_sizes=(5, 2), random_state=1)
Training the Neural Network
X:[[a,l], [314]: [5J3]: [7;81; [9,1]]
Y=[e, 1, 0, 1, 1]
clf.fit(X, Y)
Taking the input point from GET parameters
X1 = (request.query[‘'x1'])
X2 = (request.query['x2'])
Classifing the input
y = clf. t([[x1,x2]]) (0]
Returning the output
ret

urn str(y)

[=]
=

host="localhost’', port=8080
P

Check the way in which

- The input GET parameters are received,

- Neural network is created/trained/applied with Scikit-learn library, and
- Output is returned

38

't can be tested in a browser using
GET parameters:

 URL with parameters x1 and x2:
http://localhost:8080/integration?x1=0&x2=1

< C ®© © @ localhost:8080/integration?x1=08x2="1
M MG H *® @ 6 Bum Bcty EInuem B InZr B bus B me B3 dict

0

In this case, "0" is the result of sorting (x1,x2) = (0,1)

ntegration of a Java System with
neural network classification in
Python

* |n any Java program
 Add GET parameters to the URL

* Make an HTTP request to the localhost or to the
corresponding website.

e Set a time limit (i.e. timeout)
e Read program output in Python

* In this example, the output of a neural network (Multi-
layer Perceptron) implemented with the Scikit-learn
library is read.

e Scikit-learn website:

package integrationrequesthttp; Example of an integrated Java program
import java.io.BufferedReader; with the neural network in Python

import java.io.IOException;

import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;

import java.util.logging.Level;

import java.util.logging.Logger;

public class IntegrationRequestHTTP {

public static void main(String[] args) {

try {
URL url = new URL("http://localhost:8080/integration?xl1=0&x2=1");
HttpURLConnection con = (HttpURLConnection) url.openConnection();

con.setRequestMethod ("GET") ;
con.setConnectTimeout (5000) ;
con.setReadTimeout (5000) ;
BufferedReader in = new BufferedReader(
new InputStreamReader (con.getInputStream())):;
String result= in.readLine () ;
System.out.println ("The classification result is "+result);
} catch (MalformedURLException ex) ({
Logger.getlLogger (IntegrationRequestHTTP.class.getName ())
.log(Level.SEVERE, null, ex);
} catch (IOCException ex) {
Logger.getlLogger (IntegrationRequestHTTP.class.getName ())
.log(Level.SEVERE, null, ex);

MOM (Message-oriented
Middleware) (1)

* Secure communication

* Message queuing

* Directory support

* Distributed communications

* MOM does not model communications as remote
method invocations (unlike CORBA for example).

MOM (2)

* Support message passing
* Message passing is non-blocking

* MOM allows posting and subscribing to channels to
send and receive messages

e Basic MOMs allow only direct messages
* Advanced MOMs enable cross-platform switching

MOM(3)

MOM Advantages:
e Simple, just publish and subscribe

* Easy to install and use, unlike remote calling
methods with CORBA.

* Generic and can be used between heterogeneous
applications

* Flexible, it is not restrictive in what it sends, it
simply sends it.

MOM (4)

Disadvantages of MOM

* Because it is so generic, applications are in charge of
interpreting the messages.

* Developers are often unfamiliar with

* Asynchronous, it can be difficult to work with programs
with blocking messages in a natural way, since MOM is

non-blocking.

* Messages have no structure and can be more difficult
to interpret.

* Non-standard: MOM only facilitates communication
but messages must be interpreted by the application.

MOM (5)

When to use MOMIs:
* When applications need messages

* When you do not want to mix programming with
call definition.

* When CORBA or similar are very complex

* When remote calls are very rudimentary

MOM designh considerations

* The Message Bus connects various applications
* The "Channel" class is the message bus interface.

* The "ChannelListener" classes are used to listen for
messages

* The "ChannelsUpdatelListener" class is used to
receive notifications from the listening channel.

* MessageBus interface and MessageBusSocketimpl
class allows communication with the world
outside the app.

Use of MOM in client (1)

 Establish an instance of the message bus:

Channel. setMessageBus (new
MessageBusSocketimpl (BROKER_NAME,
BROKER_PORT));

e Subscribe to a channel

Channel textChannel = Channel.subscribe
("text_channel", this);

* Post a message in the channel.:

textChannel. publish (new String (myID + " says
Hello!"));

Use of MOM in client (2)

e Unsubscribe from a channel:

textChannel. unsubscribe (ChannelListener);
* Get a list of channel names:

Enumeration Channel. getChannelNames ();

MMO Interfaces

The ChannelListener class should be implemented by any object that wants to
Be notified when a message is received from a calna

public interface ChannelListener |

public void messageReceived (Channel channel, Object message) ;

The ChannelsUpdateListener interface has to be implemented by any
object you want to be notified when a channel is added

public interface ChannelsUpdatelistener ({
public void channelAdded (String name) ;

Example of MOM

/**
*
*
*
*
*
*/

pub

MOM Client Interface.

<p>
The MOM Client is the client side part of the message broker, it allows client code to subscribe to messages and
send messages.

</p>

lic interface IMomClient {

/**
* Subscribe to a particular message class.
* @param <T> the class of the message object that will be processed
* @param messageClass the class of the message to subscribe to
* @param messageProcessor the processor that will handle the message
*/
<T> void subscribe(Class<T> messageClass, IMessageProcessor<T> messageProcessor);

[**

* Send a message.

* <p>

* If the object to be sent is a modified object that has already been sent it must be cloned otherwise the
* receiver on the other end will not get the modifications.

* </p>

* @param destination the destination
* @param message the message to send
*/
void sendMessage(String destination, Serializable message);

51

Example implementation of the
above interface

@Override
public final <T> void subscribe(@NotNull Class<T> messageClass, @NotNull IMessageProcessor<T> subscriber) {
Set<IMessageProcessor<?>> processorsForThisType = messageProcessors.get(messageClass);
if (processorsForThisType == null) {
processorsForThisType = new HashSet<>();

messageProcessors.put(messageClass, processorsForThisType);

}
processorsForThisType.add(subscriber);
¥
@Override

public final void sendMessage(@NotNull String destination, @NotNull Serializable messageObject) {
Message message = new Message(destination, messageObject);

messages.add(message);

52

/**
* Process a Message.
* <p>
* Calls processMessage on all processors that are registered for this message class.
* </p>
* @param <T> the class of the message object that will be processed
* @param body the message body
*/
@SuppressWarnings("unchecked")
private <T> void processMessage(@NotNull T body) {
Class<?> messageClass = body.getClass();
Set<IMessageProcessor<?>> processorsForThisType = messageProcessors.get(messageClass);
if (processorsForThisType != null) {
for (IMessageProcessor<?> processor : processorsForThisType) {
IMessageProcessor<T> typedProcessor = (IMessageProcessor<T>) processor;
if (eventQueue == null) {

typedProcessor.processMessage(body);

}
else {

eventQueue.invoke(() -> typedProcessor.processMessage(body));
}

53

/**

* In Loop.

* <p>

* Gets messages from the input stream and processes them.
* </p>

*/

private class InLoop implements Runnable {

@0override
public void run() {
LOGGER. info("Input loop is running");

try {
while (running) {
try {
Message message = (Message) inStream.readObject();
processMessage(message.getBody());
}
catch (ClassNotFoundException e) {
LOGGER.error("Could not read message", e);
}
}
}

catch (IOException e) {
if (running) {
LOGGER.error("In stream closed”, e);

stop();

¥
LOGGER. info("Input loop is stopped");

/**

* Qut Loop.

* <p>

* Gets messages from the queue and sends them to the MOM Server.
* </p>

f

private class OutLoop implements Runnable {

@0Override
public void run() {
LOGGER.info("Output loop is running");
try {
while (running) {
Message message = messages.poll(1eee, TimeUnit.MILLISECONDS);
if (message != null) {
outStream.reset();

outStream.writeObject(message);

}
catch (IOException e) {
if (running) {
LOGGER.error("Output stream closed", e);
stop();

5
catch (InterruptedException e) {
if (running) {
LOGGER.error("0Out loop interrupted”, e);
stop();

s
LOGGER.info("Output loop is stopped");

55

Bibliography

* Ruh, W. A,, Maginnis, F.X., Brown, W.J., "Enterprise
Application Integration”, Wiley e-book.

e Bottle: http://bottlepy.org/docs/dev/
* Scikit-learn: https://scikit-learn.org
e MOM in Java: https://docs.oracle.com/cd/E19148-

01/819-4470/gbpdl/index.html

56

